收藏本站
《南京大学》 2014年
加入收藏

钴镁氧颗粒膜的磁学性质研究

葛传楠  
【摘要】:近年来,随着科学技术的发展,人们要求提高信息存储密度,缩小存储器件尺寸。存储器件中磁性颗粒的尺寸缩小,有利于提高存储密度,但是当磁性颗粒的大小逐渐减小到临界值以下时,磁性颗粒内的磁矩会变得无序,这就是所谓的"超顺磁性限制",因此,找到有效稳定磁矩的办法,这对于基础研究和技术应用都很有意义。引入交换偏置效应是解决这个问题的可能办法之一。1956年,Meikleijohn和Bean在部分被氧化的Co颗粒系统中观察到交换偏置效应。此后,交换偏置效应在多种人造材料中被观察到,科学家们对交换偏置现象做了很多深入的探索。2003年,Shumryev等在《Nature》上撰文提出,可以利用Co/CoO颗粒中的交换偏置效应打破纳米Co颗粒的超顺磁性限制,提高Co颗粒的热稳定性,并且增大矫顽力。这一研究成果为交换偏置效应带来了新的应用价值,因此引起了人们的广泛兴趣。弄清交换偏置效应产生的微观机制并用恰当的理论加以解释,再据此设计制造能获得高交换偏置场的人造材料,是目前这一领域的研究重点。但是令人遗憾的是迄今为止交换偏置效应产生的确切微观机制仍然不明确,已有的多种理论模型也仍然存在争议。有一种理论认为交换偏置效应与铁磁和反铁磁界面的自旋结构有关,在铁磁和反铁磁界面处不随外加磁场旋转的未补偿自旋是交换偏置效应的真正来源,交换偏置场的大小与这种未补偿自旋的密度高低有关。目前,这种观点被比较广泛地接受,并且正在被越来越多的实验结果证实。根据交换偏置效应的特征,结合磁性颗粒膜的性质,我们制备了一系列Co/CoO-MgO颗粒膜样品(Co/CoO颗粒嵌入MgO介质)。本文研究的重点:1.利用磁性表征技术测量这一系列Co/CoO-MgO颗粒膜样品的磁、电参数(交换偏置场、矫顽力、磁畴结构、电阻等);2.利用X射线磁性圆二色性(XMCD)实验确定Co与CoO界面处的自旋结构;3.根据实验结果探究该系统具有大交换偏置场和大矫顽力的原因,证明交换偏置的未补偿自旋模型理论的合理性;4.明确交换偏置场和矫顽力之间的关系,找到调控交换偏置场和矫顽力的可能途径,以利于研发高性能的磁记录材料。5.测试发现样品具有显著的磁光效应增强,这是样品中的金属钴颗粒表面的局域表面等离激元共振引起的。论文主要包括以下三个部分:一、(Co/CoO)-MgO颗粒膜中的交换偏置效应的研究1、利用磁控溅射技术制作了一系列组份不同的Co/CoO-MgO颗粒膜样品。选取钴原子比为69%的样品Co69Mg7024(即CCMO1)和钻原子比为80%的样品Co80Mg6014(即CCM02)做了仔细的研究。2、在渗流阈值以下的样品CCMO1中观察到高达2460Oe的交换偏置场和高达62000e的矫顽力。在Co的L2,3测得的x射线磁圆二色性吸收谱清楚地表明铁磁信号部分来源于通常呈反铁磁性的CoO壳层。3、研究结果证实了未补偿自旋模型的正确性,而且进一步证实了被钉轧的未补偿自旋的数量影响交换偏置场,可旋转的未补偿自旋的数量影响矫顽力。我们观察到的来源于反铁磁CoO壳层的铁磁XMCD信号就清楚地证明了后者的存在。二、(Co/CoO)-MgO颗粒膜中的巨矫顽力研究1、借助于高分辨透射电子显微镜(HRTEM)图片,我们清楚地确定了样品Co56/(CoO)32-(MgO)12和 Co75/(CoO)15-(MgO)10 的形态和结构。2、借助于原子力显微镜(AFM)和磁力显微镜(MFM)技术,我们弄清了样品Co56/(CoO)32-(MgO)12和 Co75/(CoO)15-(MgO)10的形貌和畴结构,并进行了对比。3、通过分析Co/CoO-MgO纳米颗粒膜样品的磁滞回线,我们得到了样品Co56/(CoO)32-(MgO)12和Co75/(CoO)15-(MgO)10在相同条件下交换偏置场和矫顽力之间的差异,以及两个样品交换偏置场和矫顽力随温度变化的情况。我们还特别测量了外加不同大小冷却磁场时样品Co56/(CoO)32-(MgO)12的交换偏置场和矫顽力。4、通过对样品Co56/(CoO)32-(MgO)12和Co75/(CoO)15-(MgO)10的磁性分析可得,钴体积比恰好达到渗流阈值的样品Co56/(CoO)32-(MgO)12具有高达7121 Oe的矫顽力和高达3435 Oe的交换偏置场。可见交换偏置的存在有利于提高系统的矫顽力。5、研究结果表明,通过改变Co/CoO-MgO纳米颗粒的交换偏置场的大小可以调控其矫顽力。三、(Co/CoO)-MgO颗粒膜中的克尔效应研究1、测量得出Co/CoO-MgO颗粒膜的磁光克尔角与入射光波长之间的关系曲线。应用经典4×4矩阵法拟合了Co/CoO-MgO颗粒膜的磁光克尔角与入射光波长之间关系的实验曲线。2、测量了入射光波长为共振波长时所有样品的磁光克尔角。3、用等离激元理论解释了样品中磁光克尔角增大的原因。
【关键词】:
【学位授予单位】:南京大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:O484.43
【目录】:
  • 摘要4-7
  • Abstract7-15
  • 第一章 绪论15-51
  • 第一节 引言15-16
  • 第二节 颗粒膜16-23
  • 1 颗粒膜的定义16-17
  • 2 颗粒膜的逾渗行为17-20
  • 3 颗粒膜的研究现状与应用价值20-23
  • 第三节 交换偏置效应23-43
  • 1 交换偏置效应的基本现象23-24
  • 2 交换偏置效应的基本物理过程与分类24-28
  • 3 与交换偏置效应相关的几个因素28-34
  • (1) 温度28-29
  • (2) 铁磁层厚度29-30
  • (3) 反铁磁层厚度30-31
  • (4) 补偿和未补偿反铁磁界面31-32
  • (5) 冷却场32-33
  • (6) 界面粗糙度和晶粒尺寸33-34
  • 4 与交换偏置效应相关的几个现象34-38
  • (1) 锻炼效应34-35
  • (2) 矫顽力35-36
  • (3) 稀释36-38
  • 5 交换偏置的理论模型38-42
  • (1) 早期的直观模型38-41
  • (2) 理论模型的进一步发展41-42
  • 6 交换偏置的研究现状及应用42-43
  • 第四节 磁光效应43-45
  • 1 磁光效应的定义43
  • 2 克尔(Kerr)效应的分类43-44
  • 3 4×4矩阵法介绍44-45
  • 第五节 本文的内容安排45-47
  • 参考文献47-51
  • 第二章 样品的制备与表征51-69
  • 第一节 射频磁控溅射法51-52
  • 1 射频磁控溅射装置的基本构成51-52
  • 2 复合靶制备52
  • 第二节 结构表征手段52-68
  • 1 X射线能量色散谱52-53
  • 2 四端法测量电阻53
  • 3 扫描探针显微术53-54
  • 4 透射电子显微镜54-55
  • 5 振动样品磁强计55
  • 6 超导量子干涉仪55-57
  • 7 x射线磁性圆二色性实验57-68
  • (1) XMCD测试技术的优越性57
  • (2) XMCD测试技术的发展历史57-58
  • (3) XMCD实验原理58-65
  • (4) XMCD实验装置65-66
  • (5) XMCD测试技术的应用66-68
  • 参考文献68-69
  • 第三章 (Co/CoO)-MgO颗粒膜中的交换偏置效应的研究69-87
  • 第一节 引言69-70
  • 第二节 实验部分70-71
  • 1 样品的制备70
  • 2 样品的表征70-71
  • 第三节 结果与讨论71-81
  • 1 样品的形貌及微结构71-72
  • 2 样品的电阻72-73
  • 3 样品的磁性73-76
  • 4 样品中的反铁磁稀释效应76-77
  • 5 XMCD测试及其结果分析77-81
  • 第四节 本章小结81-83
  • 参考文献83-87
  • 第四章 (Co/CoO)-MgO颗粒膜中的巨矫顽力研究87-100
  • 第一节 引言87-88
  • 第二节 测试结果与讨论88-97
  • 1 (Co/CoO)-MgO颗粒膜样品的渗流阈值88-89
  • 2 (Co/CoO)-MgO颗粒膜样品的微观结构89-90
  • 3 (Co/CoO)-MgO颗粒膜样品的表面形貌和磁畴90-91
  • 4 (Co/CoO)-MgO颗粒膜样品的磁性测量和结果分析91-97
  • 第三节 本章小结97-98
  • 参考文献98-100
  • 第五章 (Co/CoO)-MgO颗粒膜的克尔效应研究100-109
  • 第一节 引言100-101
  • 第二节 实验部分101
  • 第三节 样品表征与结果讨论101-107
  • 1 样品的形貌和微结构101-102
  • 2 磁光纵克尔角与入射波长关系研究102-104
  • 3 以4×4矩阵法与洋葱模型拟合实验曲线104-105
  • 4 磁光纵克尔角与钴含量关系研究105-107
  • 第四节 本章小结107-108
  • 参考文献108-109
  • 第六章 全文工作总结109-112
  • 攻读博士期间发表或待发表的论文112-113
  • 致谢113-114

【相似文献】
中国期刊全文数据库 前10条
1 都有为;颗粒膜的研究[J];科技导报;1994年10期
2 王取泉,赵同云,曹巍,熊贵光,周正国,田德诚;Au-LiNbO_3纳米颗粒膜的制备和物性分析[J];武汉大学学报(自然科学版);1999年03期
3 汪壮兵,任清褒,焦正宽;Fe_XCu_(1-X)纳米颗粒膜R-I特性[J];浙江大学学报(理学版);2001年03期
4 谢子斌,王取泉,周正国,熊贵光;Au-Ag-SiO_2复合纳米金属颗粒膜的共振特征[J];武汉大学学报(自然科学版);1999年01期
5 赵志军,王兵,王海千;Co-SiO_2 颗粒膜中颗粒相互作用的温度和尺寸依赖关系(英文)[J];低温物理学报;2002年04期
6 张林,张连生,张汝贞,刘宜华,张维咸,黄宝歆,梅良模;Fe_x(In_2O_3)_(1-x)颗粒膜磁性的研究[J];自然科学进展;1999年08期
7 张秋霞;李玉国;王建波;张敬尧;崔传文;张月甫;;Au/SiO_2复合纳米颗粒膜的制备及退火行为研究[J];微纳电子技术;2007年12期
8 汪壮兵,沙健,葛洪良,焦正宽;Fe_XCu_(1-X)颗粒膜反常输运性质[J];科学通报;1999年03期
9 崔福良,庄惠照,李怀祥,薛成山,肖淑娟,贺月娇;Co/ZnO颗粒膜的超顺磁性研究[J];山东师大学报(自然科学版);2000年01期
10 王松有,周鹏,郜小勇,郑玉祥,李晶,杨月梅,陈良尧;Cr-Ag颗粒膜的尺寸效应对光学效应的影响[J];红外与毫米波学报;2003年01期
中国重要会议论文全文数据库 前1条
1 米文博;李志青;吴萍;姜恩永;白海力;;Co-C颗粒膜的形貌和微结构[A];第四届全国磁性薄膜与纳米磁学会议论文集[C];2004年
中国博士188bet全文数据库 前2条
1 葛传楠;钴镁氧颗粒膜的磁学性质研究[D];南京大学;2014年
2 左华平;FeCoSi/native-oxide多层膜和FeCoB-O颗粒膜的高频软磁特性[D];兰州大学;2010年
中国硕士188bet全文数据库 前5条
1 冯文;锰基钙钛矿三明治多层膜和金属颗粒膜的电磁输运行为研究[D];华中科技大学;2004年
2 李斌生;FeCoSiO/SiO_2纳米多层颗粒膜的高频软磁特性[D];兰州大学;2006年
3 米文博;(Co,Fe)-C颗粒膜的微观结构与磁性质[D];天津大学;2004年
4 王婷婷;一种新型的树莓形状荧光二氧化硅颗粒及其颗粒膜的制备[D];东北师范大学;2008年
5 金晶;有序化L1_0相FePt-C基颗粒膜的结构和磁学性质[D];天津大学;2010年
 快捷付款方式  订购知网充值卡  订购热线  帮助中心
  • 400-819-9993
  • 010-62791813
  • 010-62985026